isomorphic hypergraphs - определение. Что такое isomorphic hypergraphs
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое isomorphic hypergraphs - определение

Computably isomorphic

Hypergraph         
  • This [[circuit diagram]] can be interpreted as a drawing of a hypergraph in which four vertices (depicted as white rectangles and disks) are connected by three hyperedges drawn as trees.
  • An example of a directed hypergraph, with
<math>X = \{1, 2, 3, 4, 5, 6\}</math> and
<math>E = \{a_1, a_2, a_3, a_4, a_5\} = </math>
<math>\{(\{1\}, \{2\}),</math>
<math>(\{2\}, \{3\}),</math>
<math>(\{3\}, \{1\}),</math>
<math>(\{2, 3\}, \{4, 5\}),</math>
<math>(\{3, 5\}, \{6\})\}</math>.
  • url-status=live}}</ref> Edges are vertical lines connecting vertices. V7 is an isolated vertex. Vertices are aligned to the left. The legend on the right shows the names of the edges.
  • An order-4 Venn diagram, which can be interpreted as a subdivision drawing of a hypergraph with 15 vertices (the 15 colored regions) and 4 hyperedges (the 4 ellipses).
GENERALIZATION OF A GRAPH IN WHICH GENERALIZED EDGES MAY CONNECT MORE THAN TWO NODES
Host graph; Gaifman graph; Primal graph (hypergraphs); Dual hypergraph; Hypergraphs; Hypergraph acyclicity; Alpha-acyclic; Hypergraph (mathematics); Directed hypergraph; Hyper-graph
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.
Isomorphic keyboard         
MUSICAL INPUT DEVICE CONSISTING OF A 2D GRID OF BUTTONS OR KEYS ON WHICH ANY GIVEN SEQUENCE/COMBINATION OF MUSICAL INTERVALS HAS THE "SAME SHAPE" ON THE KEYBOARD WHEREVER IT OCCURS—WITHIN A KEY, ACROSS KEYS, ACROSS OCTAVES, AND ACROSS TUNINGS
Isomorphic keyboards; Tuning invariance; Tuning-invariant; Tuning invariant
An isomorphic keyboard is a musical input device consisting of a two-dimensional grid of note-controlling elements (such as buttons or keys) on which any given sequence and/or combination of musical intervals has the "same shape" on the keyboard wherever it occurs – within a key, across keys, across octaves, and across tunings.
Matching in hypergraphs         
SET OF HYPEREDGES WHERE EVERY PAIR IS DISJOINT
Hypergraph matching; Fractional matching in hypergraphs; Intersecting hypergraph
In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph.

Википедия

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.